

Therapeutic Plasma Exchange (TPE) Procedure Training (Including Single Needle Option)

Spectra Optia[®] Apheresis System

Operator's Manual Information

Spectra Optia Apheresis System

Intended Use

The Spectra Optia Apheresis System, a blood component separator, may be used to perform the following therapeutic apheresis, cell collection, and cell processing procedures*:

- Therapeutic plasma exchange
- Therapeutic plasma exchange with a secondary plasma device
- Red blood cell exchange, depletion, and depletion/exchange
- Mononuclear cell collection from the peripheral blood
- Granulocyte collection from the peripheral blood
- White blood cell depletion
- Platelet depletion
- Processing of harvested bone marrow

*Procedure availability varies by country.

Contraindications for Use

- Leukocytapheresis is contraindicated in AML FAB M3 (APL) because of the accompanying disseminated intravascular coagulation. (Vahdat L, et al., "Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PMN/RAR-alpha isoform and CD13 expression in patients treated with all-trans retinoic acid." Blood 1994; 84: 3843-3849. Daver, et al., "Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis." British Journal of Haematology 2015, 168, 646-653.)
- Other contraindications for the use of the Spectra Optia system are limited to those associated with the infusion of solutions and replacement fluids as required by the apheresis procedure, and those associated with all types of automated apheresis systems.

Possible Adverse Events of Apheresis Procedures Include:

Anxiety, headache, light-headedness, digital and/or facial paresthesia, fever, chills, hematoma, hyperventilation, nausea and vomiting, syncope (fainting), urticaria, hypotension, allergic reactions, infection, hemolysis, thrombosis in patient and device, hypocalcemia, hypokalemia, thrombocytopenia, hypoalbuminemia, anemia, coagulopathy, fatigue, hypomagnesemia, hypogammaglobulinemia, adverse tissue reaction, device failure/disposable failure, air embolism, blood loss/anemia, electrical shock hazard, fluid imbalance, inadequate separation of blood components.

Reactions to Blood Products Transfused During Procedures

Reactions to transfused blood products can include fever, circulatory overload, shock, allergic reactions, alloimmunization, transfusion-related acute lung injury (TRALI), and graft-versus-host disease (GVHD), as well as transmission of infectious diseases and bacteria. (Sources: *Circular of Information for the Use of Human Blood and Blood Components*, AABB, et al, ed., April, 2006; *Guide to the preparation, use and quality assurance of blood components*, 10th Edition, Council of Europe Publishing; Toy P et al., "Transfusion-Related Acute Lung Injury: Incidence and Risk Factors." *Blood*, 2012; 119: 1757-1767.)

Restricted to Prescription Use Only:

- Operators must be familiar with the system's operating instructions.
- Procedures must be performed by qualified medical personnel.

Learning Objectives

After completing this training you will be able to do the following regarding a TPE procedure using the Spectra Optia system:

- Discuss the principles of the procedure.
- Enter and discuss the data needed to perform the procedure.
- Discuss how the data you entered affects the procedure and the run targets.
- View and change the data on the run values screen.
- Make changes to the data on the Data, Run, and End Run menu screens.
- Optimize the run to achieve the desired procedure outcomes.
- Troubleshoot issues that may arise.
- Describe using the single-needle option with a TPE procedure.
- Understand the issues related to pediatrics/low total blood volume (TBV) patients.

Presentation Overview

- Introduction
- Preparing to Perform the Procedure
- Monitoring the Run
- Completing the Run
- Making Changes
- Troubleshooting
- Single-Needle
- Pediatric/Low TBV Patients

- Exchange Set
- Basic Principles of TPE
- Connector

Exchange Set

- 1. Replace Line
- 2. Remove Bag
- 3. Channel
 - Connector
- 4. Cassette
- 5. Colored Spikes and Tubing
- 6. AC Check Valve
- 7. Colored Clamps

Basic Principles of TPE

Basic Principles of TPE – Channel

- 1. Anticoagulated whole blood enters the channel.
- 2. Red blood cells (RBC) flow to the reservoir.
- 3. Plasma is pumped to the reservoir or to the plasma bag.

Connector

1. Plasma Port

2. RBC Port

Questions?

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

- Configuration TPE Procedures
- Configuration Blood Warmer
- Channel Loading
- Patient Data
- Fluid Data
 - Replacement Fluid
 - Fluid Balance
- Run Values
- Spiking the Replacement Fluid
- Patient Connection

Configuration – TPE Procedures

Configuration – Blood Warmer

Channel Loading (very important)

Preparing to Perform the Procedure

Use standard filler

- 1. Centrifuge collar is in the correct position.
- 2. Notch on locking pin is visible.

- 3. Optical reference is visible.
- 4. Channel sits flush with the groove.

Patient Data

Fluid Data – Replacement Fluid

Config	Data	Run	End Run	Config		Data	Run	End Run
Rep	Select replace	cement fluid.	asma /Albumin Istom		Repla Flu Saline, (4 % (cement uid /Albumin Citrate)	Patient Flu	id Balance Percent 100 % %
11:24 19-10-2012	Conf	îrm 🕤	ΤΡΕ	11:24 19-10-2012	2	Conf	firm 5	ΤΡΕ

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Run Values

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Spiking the Replacement Fluid

Patient Connection

Questions?

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Monitoring the Run

- Main Run
 - AIM Graphic
- Platelet Flush
- View Port

Main Run

Main Run

- 1. Ideal Interface
- 2. Buffy Coat Accumulation
- 3. Plasma
- 4. Black
- 5. AIM image

Platelet Flush

- AIM system establishes the interface. 1.
- AIM system continuously monitors the interface position. 2.
- Buffy coat accumulates. 3.

Platelet Flush (Continued)

- System changes the pump flow rates to lower the position of the interface. 4.
- Buffy coat is returned to the patient. 5.
- Interface position is returned to normal after platelet flush is completed. 6.

Monitoring the Run

View Port

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Questions?

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Completing the Run

- Run Targets Attained
- Rinseback and Disconnect
- Procedure Summary

Run Targets Attained

Config	Data		F	Run	End Run				
Run targets attained.									
		Tar	get	Current					
	Volumes Exchanged	1.	.0	1.0					
	Run Time (min)	6	7	67					
	Plasma Removed (mL)	31	23	3123					
	Replacement Fluid Used (mL)	29	87	2987					
12:36 19-10-2012		Rinse	back		ТРЕ				

Rinseback and Disconnect

Procedure Summary

Config	Data	Run	End Run	Config	Data	Run	End Run
AC	Used 533 mL	Start Time	11:30	Plasma Vol Excha	umes 1.0	New Pro	cedure
Remov	e Bag 3620 mL	End Time	12:39	Plasma Rem	oved 3123 mL		
Replacement	Used 2987 mL	Run Time	69 min	AC in Remov	e Bag 480 mL		
	Bolus 0 mL	Fluid Balance	0 mL				
Tubin	ng Set3 mL	Fluid Balance	100 %	AC to Pa	atient 31 mL	Custom Prime	0 mL
Rinse	eback 121 mL	Inlet Processed	5234 mL	AC Used for	Prime 21 mL		0 mL
12:43 19-10-2012	12:43 Next Page TPE				Previou	s Page	ТРЕ

To calculate the patient's fluid balance, use the values on the procedure summary screen: +533 mL -3620 mL +2987 mL -3 mL <u>+121 mL</u> 0 mL <u>+0 mL</u>Bolus (if given) 0 mL Patient's Fluid Balance

Questions?

Spectra Optia TPE Procedure Training (Including Single-Needle Option)

Making Changes

- Configuration Menu
- Data Menu
- Run Menu
- End Run Menu

Making Changes – Data Menu

Data Menu

- Change Procedure
- Patient Data
- Fluid Data
- Alarm History
- Report

Making Changes – Data Menu

Patient Data

Making Changes – Data Menu

Fluid Data

Alarm History

Config		Data	Run	End Run
Change Procedure	Patien Data	t Fluid Ala Data His	rm Report	
	11:41:0			
	11:37:0			
	11:35:0			
	11:33:03 Pause button was touched.			
11:42 19-10-2012			1	TPE

Report

Run Menu

- Exchange Status
- Operation Status
- Bolus
- Strobe
- Run Values
- Options

Exchange Status

Operation Status

Bolus

Strobe

Making Changes – Run Menu

Run Values

Options

Note: Not all options are commercially available in all world areas.

Making Changes – End Run Menu

End Run Menu

Rinseback, Disconnect, Run Targets

Making Changes – End Run Menu

Rinseback, Disconnect, Run Targets

Questions?

Optimization

- Plasma Volumes Exchanged
- Fluid Balance
- AC to Patient

Plasma Volumes Exchanged

The number of plasma volumes exchanged determines the amount of disease mediator removed.

Fluid Balance

Patient TBV 3000 mL, Target Fluid Balance 100%

Optimization

Fluid Balance

Patient TBV 3000 mL

AC to Patient

1.0 Plasma Volumes Exchanged, AC Infusion Rate 0.8 mL/Min/L TBV

TBV 1000 mL, 28% Hct				
Inlet:AC Ratio	10:1	15:1	20:1	
AC Used	120 mL	77 mL	57 mL	
AC to Patient	39 mL	36 mL	34 mL	

TBV 3000 mL, 28% Hct				
Inlet:AC Ratio	10:1	15:1	20:1	
AC Used	359 mL	232 mL	171 mL	
AC to Patient	115 mL	107 mL	102 mL	

TBV 5000 mL, 28% Hct				
Inlet:AC Ratio	10:1	15:1	20:1	
AC Used	599 mL	387 mL	285 mL	
AC to Patient	191 mL	178 mL	171 mL	

Note: Terumo Blood and Cell Technologies does not recommend inlet: AC ratios above 15.

Questions?

Troubleshooting

- Turbulence
- Semi-Automatic Mode
- High Interface
- Hemolysis
- Clumping

Turbulence

- 1. AIM Image
- 2. Algorithm Control Icon
- Look through the view port to verify if turbulence is present in the connector.

Turbulence may be caused by: High inlet pump flow rate Low packing factor Platelet swirling Hyperviscosity/Mild Lipemia

Decrease the inlet pump flow rate to increase the packing factor

Do nothing

Enter Semi-Automatic mode

Semi-Automatic Mode

- Semi-Automatic mode icon appears on the screen
- AIM system no longer controls the interface position

High Interface

"AIM system detected RBC interface near top of channel"

 Look through the view port to verify the position of the interface and verify entered Hct.

 Interface is near the top of the connector and entered Hct is incorrect
 Lower the interface by increasing the entered Hct by 3% up to 3 times to avoid platelet loss

 Interface is near the top of the connector and entered Hct is correct
 Touch Retry to resume the procedure

Troubleshooting

Hemolysis

- Certain patient conditions may cause hemolysis
- If hemolysis related to the patient's condition is suspected, verify presence of hemolysis prior to disabling the RBC detector

Troubleshooting

Clumping

If clumping is suspected:

- Decrease the inlet:AC ratio to 8:1
- Process 100 mL of inlet volume
- Verify clumping has resolved
- Consider increasing the inlet:AC ratio to 10:1

Questions?

Single Needle

- Single-Needle Connector
- Convert Access to Single-Needle
- Optimization

Single Needle

Single-Needle Connector

Convert to Single Needle

With blood warmer on return line

Without blood warmer on return line

Convert to Single Needle

Single Needle

Optimization

- Inlet pump flow rate set by the system
- The procedure continues at a new inlet pump flow rate set by the system

Single Needle

Optimization

- Inlet pump flow rate set by the operator
- The system will continue the run at same inlet pump flow rate

Questions?

Pediatrics/Low TBV Patients

- Minimum Data Entry Limits
- AC Management
- Fluid Balance
- Custom Prime RBC
- Custom Prime RBC (60%)

Pediatrics/Low TBV Patients

Minimum Data Entry Limits

Patient data

- Height: 12 inches or 30 cm
- Weight: 5 lbs or 2 kg
- TBV: 300 mL

(The system will not calculate the TBV for weight < 25 kg)

- Inlet pump flow rate
 - 5 mL/min

AC Management

AC infusion rate

■ The AC infusion rate may need to be increased to achieve an inlet pump flow rate ≥5 mL/min.

Inlet: AC ratio

The inlet:AC ratio needs to be kept at a value that maintains proper anticoagulation.

Configured AC infusion rate 0.8 mL/min/L TBV and inlet:AC ratio 10:1					
Patient TBV	300	400	500	600	
Initial Inlet pump flow rate	2.7	3.5	4.3	5.2	
Increased AC infusion rate	1.5	1.2	1.0	0.9	
Inlet pump flow rate	5.0	5.3	5.4	5.8	

Pediatrics/Low TBV Patients

Fluid Balance

- Target fluid balance
 - Patient tolerance of the procedure
- Blood warmer
 - Patient comfort
- Custom prime
 - Improved tolerance of the volume of the extracorporeal circuit

Pediatrics/Low TBV Patients

Custom Prime – RBC

Pediatrics/Low TBV Patients

Custom Prime – RBC

Custom Prime – RBC (60%)

Patient		200 mL RBC	No blood prime	240 mL RBC	No blood prime
		No blood warmer		40 mL blood warmer	
TBV	Hct (%)	Change in patient Hct (%)			
300 mL	25	+5	-13	+8	-14
	30	+4	-14	+7	-16
	35	+3	-15	+6	-17
	40	+2	-16	+4	-18
600 mL	25	+3	-7	+5	-8
	30	+2	-8	+4	-9
	35	+2	-8	+3	-10
	40	+1	-9	+2	-11
1000 mL	25	+2	-5	+3	-5
	30	+2	-5	+2	-6
	35	+1	-5	+2	-6
	40	+1	-6	+2	-7

Note: The table indicates the approximate change in the patient's Hct after custom prime.

Questions?

Spectra Optia TPE Procedure Training (Including Single-Needle Option)